Peter O. Anderson, Ohio State University

Exact distribution theory for orthogonal least-squares estimators is quite difficult (this is a special case of principal components estimation). In general the estimators have asymptotic normal distributions. Using this fact and using a consistent estimator for the variance, approximate confidence intervals can be obtained. An alternative is to use the jackknife technique to obtain confidence intervals. A Monte Carlo study shows that even for small samples the two procedures tend to give similar results.

$$\hat{\theta} = \frac{1}{2} \tan^{-1} \frac{\frac{2A_{12}}{A_{11} - A_{22}}}{A_{11} - A_{22}}$$

$$A_{11} = \frac{N}{1} (X_{1} - \overline{X})^{2}, A_{12} = \frac{N}{1} (X_{1} - \overline{X})(Y_{1} - \overline{Y}),$$

$$A_{22} = \frac{N}{1} (Y_{1} - \overline{Y})^{2}$$

for	θ	which	do	not	contain	the	true	valu

Nor Nor	mal - ormal	°11/°2	2 = 4	σ ₁₁ /σ ₂₂ = 100		
N	ĸ	Lg.Sample	Jack- knife	Lg.Sample	Jack- knife	
30 30 10	30 10 10	13 13 27**	11 11 21**	11 11 24**	9 14 11	

Uniform Uniform		₀11/₀55	= 4	σ _{11/σ22} = 100		
N	K	Lg.Sample	Jack- knife	Lg.Sample	Jack- knife	
30 30 10	30 10 10	10 10 19**	10 13 11	10 10 16*	9 11 8	

Uniform Exponential		م57√11م	= 4	$\sigma_{11}/\sigma_{22} = 100$	
N	ĸ	Lg.Sample	Jack- knife	Lg.Sample	Jack-knife knife
30 30 10	30 10 10	13 13 19**	10 11 10	11 11 16*	9 9 7

*Significantly different from 10 at 5" level **Significantly different from 10 at 1" level

 $\hat{\theta}$ asymptotically N($\theta, \sigma_{\theta, N}^2$). X,Y bivariate normal implies

$$\sigma_{\theta,N}^{2} = \frac{1}{N} \cdot \frac{\sigma_{11}\sigma_{22}}{\sigma_{11}-\sigma_{22}}^{2} = \frac{1}{N} \cdot \frac{\sigma_{11}/\sigma_{22}}{\sigma_{11}/\sigma_{22}-1}^{2}$$

Large Sample Confidence Interval: $\hat{\theta} \pm \mathbf{z}_{\alpha} \cdot \hat{\sigma}_{\theta, \mathbf{N}}$

Jackknife Confidence Interval: $\tilde{\theta} \pm t_{\alpha,K-1} \cdot s_{\theta} / \sqrt{K}$

where
$$\widetilde{\theta} = \frac{1}{K} \sum_{i=1}^{K} \widetilde{\theta}_{i}, \ s_{\theta}^{2} = \frac{1}{K-1} \sum_{i=1}^{K} (\widetilde{\theta}_{i} - \widetilde{\theta})^{2}$$

	Numbers	of	95\$	Confider	ice	Inter	rals
for	θ which	đo	not	contain	the	true	value

Norr No	nal - ormal	$\sigma_{11}/\sigma_{22} = 4$	a ¹¹ /a ⁵⁵ = 100	
N	ĸ	Lg.Sample Jack- knife	Lg.Sample Jack- knife	
30 30 10	30 10 10	7 3 7 7 20** <u>1</u> 3**	5 4 5 6 11** 6	

Uniform Uniform	⁰ 11/ ⁰ 22 ^{= 4}	σ _{11/^σ22} = 100	
N K	Lg.Sample Jack- knife	Lg.Sample Jack- knife	
30 30 30 10 10 10	999 999 12***7	998 994	

Uni I	iform Exponential	⁰ 11/ ⁰ 22 ^{= 4}	^o 11/ ^o 22 = 100	
N	ĸ	Lg.Sample Jack- knife	Lg.Sample Jack- knife	
30 30 19	30 10 10	9 5 9 6 13** 4	6 5 6 6 11** 4	

*Significantly different from 5 at 5% level **Significantly different from 5 at 1^d level